Parametric Modeling and Shape Optimization of Offshore Structures
نویسنده
چکیده
The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.
منابع مشابه
OPTIMAL DESIGN OF JACKET SUPPORTING STRUCTURES FOR OFFSHORE WIND TURBINES USING ENHANCED COLLIDING BODIES OPTIMIZATION ALGORITHM
Structural optimization of offshore wind turbine structures has become an important issue in the past years due to the noticeable developments in offshore wind industry. However, considering the offshore wind turbines’ size and environment, this task is outstandingly difficult. To overcome this barrier, in this paper, a metaheuristic algorithm called Enhanced Colliding Bodies Optimization...
متن کاملParametric Study of SCFs in Unstiffened Gap Tubular KT-joints of Offshore Structures under OPB Moment Loading
In this paper, results extracted from a set of stress analyses performed on 46 FE models for unstiffened gap tubular KT-joints are presented and discussed. The main objective of the FE analyses, validated against experimental data, was to run a parametric investigation on the effects of geometrical characteristics of the joint on the values of the stress concentration factors (SCFs). The SCF is...
متن کاملExperimental and Numerical Investigation of Geometric SCFs in Internally Ring-Stiffened Tubular KT-Joints of Offshore Structures
Tubular KT-joints are quite common in offshore structural design and despite the crucial role of stress concentration factors (SCFs) in evaluating the fatigue performance of tubular joints. However, the SCF distribution in internally ring-stiffened KT-joints have not been investigated and no design equation is currently available to determine the SCFs for this type of joint. In the present pape...
متن کاملDegree of Bending (DoB) in Tubular KT-Joints of Jacket Structures Subjected to Axial Loads
The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of Hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stres...
متن کاملOPTIMAL DESIGN OF ARCH DAMS BY COMBINING PARTICLE SWARM OPTIMIZATION AND GROUP METHOD OF DATA HANDLING
Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimizati...
متن کامل